Benchmarking Deep Learning Architectures for Predicting
Readmission to the ICU and Describing Patients-at-Risk

Sukrit Ganesh
sukritg2@illinois.edu
UIUC Department of Computer Science

ABSTRACT

Recent advancements in artificial intelligence hardware and soft-
ware have enabled machine learning models to perform complex
predictions. The field of healthcare, currently a multi-trillion dollar
industry, has seen massive growth in the use of artificial intelligence,
as models can save both money and lives by predicting patient out-
comes, performing diagnoses, and even discovering new drugs.
One of the most useful applications of deep learning in health-
care is predicting patient readmission, as doing so can allow for
proactive measures taken by a healthcare facility to maximize the
quality of treatment and minimize costs. Various techniques exist
for predicting patient readmission, each with its unique benefits
and drawbacks. We propose running benchmark tests on a wide
variety of machine learning techniques to predict the ICU read-
mission likelihood for patients in order to determine the optimal
techniques for various scenarios. We also propose tweaking the
hyperparameters of these models in order to determine the effect
of modifying said hyperparameters on the outcome of the model.

CCS CONCEPTS

« Machine Learning in Healthcare; « Data Pre-Processing; «
Recurrent Neural Networks; « Machine Learning Benchmark-
ing; « Attention Neural Network;

KEYWORDS
Machine Learning, Fairness, Bias

ACM Reference Format:

Sukrit Ganesh and Azaan Barlas. 2023. Benchmarking Deep Learning Ar-
chitectures for Predicting Readmission to the ICU and Describing Patients-
at-Risk. In Proceedings of Al-Faire °22: Fake ACM Symposium on Applied
Machine Learning (Al-Faire °22). ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

The paper we are working on is Benchmarking deep learning archi-
tectures for predicting readmission to the ICU and describing patients-
at-risk [2]. The paper utilizes a variety of neural network architec-
tures to predict the probability of patient readmission to an ICU
using prior patient medical data. As described in the abstract, pre-
dicting readmission is one of the most useful tools hospitals can use
to reduce costs, improve convenience for patients, and even save
lives. Unnecessary admissions, or failure to readmit patients who
have relapsed or fallen seriously ill, can strain hospital resources,
result in extra resources for delayed treatment, or even cost lives.

Al-Faire ’22, Dec 10-Dec 20, 2022, Urbana, IL
2023. ACM ISBN 978-x-xxxx-xxxx-X/YY/MM. .. $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Azaan Barlas
abarlas2@illinois.edu
UIUC Department of Computer Science

Furthermore, predicting patient readmission can allow doctors to
craft tailored treatment plans for patients and allocate future hospi-
tal resources accordingly. It is important to examine the different
ways to predict readmission and understand how changing the
different parameters relating to prediction can affect the accuracy
of the process.[3]

Several deep learning architectures that used methods such as at-
tention mechanisms, recurrent layers, neural ordinary differential
equations (ODEs), and medical concept embeddings with time-
aware attention were used in this paper and trained using the
MIMIC-III dataset associated with 45,298 ICU stays for 33,150 pa-
tients. The best-performing model for predicting readmissions to
the ICU was an RNN-ODE hybrid model (Precision: 0.331, AUROC:
0.739, F1-Score: 0.372). In general, for problems that involve EMR
data, using attention mechanisms or recurrent layers in isolation
would always provide subpar results. Methods have been proposed
to counteract this such as appending time-dependent data and us-
ing ordinary differential equations.

The utility of predicting patient readmissions into the ICU is an
extremely vital task in the world of healthcare as 10% of critically
ill patients are readmitted after being discharged, and around 30%
of hospital costs go into readmissions to the ICU. Furthermore,
around 1% of the entire gross national product of the United States
is related to ICU admissions, largely owing to the very high cost
of providing ICU treatment and the nature of the medical prob-
lems that necessitate an ICU visit. This paper aims to predict a
patient’s risk of readmission within 30 days of initial discharge
from the ICU, while also evaluating the feasibility of using different
machine-learning models involving attention and ODEs to gain a
better understanding of intensive-care patients with an increased
risk of readmission.

2 SCOPE OF REPRODUCABILITY

As it stands, the paper is easily reproducible. The codebase to pro-
cess the MIMIC-IIT dataset and train and test the models are publicly
available.[1] Although the MIMIC-III dataset requires completing
a data handling and privacy course, it is available to anyone who
successfully completes that course. The code repository, found on
GitHub, contains the pre-trained models, as well as code to process
the dataset, train the models, and evaluate them. Some additional
processing and modification may be required, as the code is from
2019, but overall it is in relatively good condition. Reproducing the
pipeline will require tweaking the code to match modern standards
and running the entire pipeline (described in more detail in the next
section) to generate training data, trained models, and inference

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Al-Faire ’22, Dec 10-Dec 20, 2022, Urbana, IL

results.

Some challenges exist, however, in reproducing the code. First of
all, deep learning models are very computationally intensive, and
it may take an inordinately long time to run these models on an
average CPU. We propose using a GPU in order to speed up train-
ing. The GPU can yield a performance speedup of several orders of
magnitude when using CUDA (a library that enables mathematical
computations to be performed on an NVidia Graphics Card). If
CUDA turns out to be infeasible, then we can reduce the size of the
training data as well. Although this may yield inferior results, the
performance tradeoff should be negligible as adding more data has
diminishing returns. Utilizing a cloud computing process such as
Amazon AWS is preferred due to the adequate computing power
provided, though such solutions may cost money. We may also try
utilizing the tensor processing unit (TPU) on Jupyter Colab in order
to speed up training. All of these options for speeding up training
have tradeoffs and benefits, but they are all viable options not just
for this paper but for machine learning in general. Inference should
not be an issue, as models do not contain significant quantities of
parameters, and inputs are relatively straightforward, consisting of
medical records ranging several weeks. Secondly, the code may be
outdated, utilizing old packages, and the training data may need to
be massaged to fit the dataset. Once again, this challenge should
be straightforward to overcome, as MIMIC-III is a commonly used
dataset, and the machine learning models used for benchmarking
use relatively generic mechanisms.

Potential ablations, described in detail in the next section, can
also be implemented. These ablations will include additional mod-
els, as well as modifications on the training data, in order to gather
more benchmarking data. We may contact the original authors of
the code for assistance in running and augmenting the model, as
we may encounter roadblocks along the way. The first of these
potential ablations is to use additional machine learning models
for benchmarking. The second potential ablation is tweaking the
hyperparameters such as the learning rate and optimizer. The third
potential ablation is modifying the training data to use different
windows of historical medical data. For instance, one pass may only
take ICU admission data from the last 30 days, while another pass
will use the entire ICU admission history of the patient.

The code will be written entirely in Python. The MIMIC-IIT
dataset will be downloaded from MIT PhysioNet, after completing
the required data handling courses.

3 METHODOLOGY
3.1 Model Description

The original paper uses many different models, but mainly a com-
bination of these main models:

(1) Recurrent Neural Networks - RNNs can use information from
previous inputs in their computation, making them suitable
for tasks where the output depends on the previous inputs.
RNNs have a loop that allows information to persist, and the
output of the loop is used as input to the next iteration.

Barlas, et al.

(2) Ordinary Differential Equations (Neural Networks) - ODEs
are used to model complex systems and dynamic processes.
Instead of computing a fixed function, an ODE learns a differ-
ential equation that describes the behavior of a system. This
allows for more accurate and flexible modeling of dynamic
systems than traditional neural networks.

(3) Attention Mechanisms - Attention is used in neural net-
works to selectively focus on different parts of the input
sequence, allowing the network to process information more
efficiently. Attention is often used in sequence-to-sequence
models, where the network needs to process variable-length
inputs and outputs, such as machine translation or image
captioning. Instead of processing the entire input sequence
at once, the network uses attention to focus on the most
relevant parts of the input at each step.

(4) Time Decay - Older samples in a sequence tend to have a
smaller impact on a prediction. In the case of predicting ICU
readmission, older ICU visits have less influence on read-
mission probabilities than more recent visits. Applying time
decay mechanisms (can use ODEs or simple mathematical
functions) can give more influence to more recent events
in an input sequence, as internal memory states decay over
time.

(5) Medical Concept Embedding - MCE is a technique used to

embed complex medical codes to be fed into an RNN or other

machine learning model. They are based on the continuous
bag-of-words model.

Logistic Regression - LR is a binary classification method. It

can be modeled as a function that can take in any number

of inputs and constrain the output to be between 0 and 1.

We can consider logistic regression to be a one-layer neural

network. We can use a binary classification method because

our dependent variable is just a readmission score derived
from a yes/no result from our models, on the likelihood of
readmission.

—~
=
~

Below is a list of the specific model configurations used for bench-
marking:

Vanilla Recurrent Neural Network (RNN)

RNN with ODE

RNN with ODE time decay

RNN with ODE time decay and Attention

RNN with ODE and Attention

RNN with exponential time decay

RNN with exponential time decay and Attention

RNN with concatenated time differences between observa-

tions

e RNN with concatenated time differences between observa-
tions and Attention

e Neural ODE with Attention

e Attention with concatenated time differences between ob-
servations (no RNN)

e RNN with Medical Concept Embeddings

e RNN with Medical Concept Embeddings and Attention

Benchmarking Deep Learning Architectures for Predicting Readmission to the ICU and Describing Patients-at-Risk

e Medical Concept Embeddings and Attention (no RNN)

Our goal was to retrain the top models in the original paper as
well as our own Vanilla RNN model and an RNN Logistic Regression
model. These models were entirely trained using the MIMIC-III
dataset and the existing infrastructure provided by the original au-
thors of the paper. We hypothesized that we would receive close to
or better results than the original paper, yet we did not. We hypoth-
esized that the custom models will yield similar performance to the
best-benchmarked models. This ties into the law of diminishing re-
turns, whereby a basic neural network yields a relatively high base
accuracy, and additional features yield marginal but significant
improvements. We also hypothesized that with sufficient train-
ing and parameters, even a fully-connected layer can yield higher
performance than any of the more complicated models, although
this will require very long training times. Although more complex
models are more efficient, brute-force solutions that involve large
models with many parameters will win out. We believed there are
diminishing marginal gains in accuracy as models become more
complex and elaborate, or are trained for longer periods of time;
they may even overfit the training data. The results of our experi-
ments showed differently as seen in the Results section of our paper.

3.2 Data Descriptions

The MIMIC-III dataset contains longitudinal electronic medical
records for numerous sample patients. Two distinct inputs will be
fed into the model: static and timestamped codes. Static data refers
to variables describing a specific patient, such as age, sex, insurance
type, marital status, etc. Timestamped codes, on the other hand,
refer to medical data such as diagnoses, prescriptions, and proce-
dures. These medical entities have unique codes. The timestamped
codes provide information about a patient’s medical history and
will be used to predict readmission risk to the ICU.

The following features are contained within the MIMIC-III dataset:

(1) Clinical Notes

(2) Demographic Information

(3) Admission and discharge information
(4) ICD-9 codes

(5) Lab Results

(6) Medications

(7) Vital Signs

(8) Procedures Performed

(9) Imaging data

The main features that are used in our model after data prepro-
cessing are shown as below:

(1) Patient data: This is a group of columns, which are demo-
graphic data such as age, sex, and other things like this.

(2) Readmission rate: This column contains the dependent vari-
able that we are trying to determine.

(3) Diagnosis and procedures: This column stores information
about the diagnoses and procedures a patient goes through.

Al-Faire ’22, Dec 10-Dec 20, 2022, Urbana, IL

This data is stored in the form of timestamped codes, where
the individual diagnoses and procedures for a patient are
associated with a timestamp.

(4) Charts and prescriptions: This stores information about pre-
scriptions and charts related to a patient’s prescriptions. This
data is also stored in timestamped code format.

(5) Times: This column is related to the times that a patient is
diagnosed, and prescribed, as well as when a procedure is
performed on the patient.

(6) IDs: These are IDs for the training, validation, and testing
data for each patient’s event IDs.

This project will only use ICU admission data from the MIMIC-
III dataset; any timestamped codes which take place outside an
ICU visit will not be used to compute readmission risk. The dataset
maintains patient anonymity and abides by all medical privacy laws.

3.3 Implementation

For our research question, we followed a specific approach:

(1) Data Preprocessing: We will use the existing preprocessing
infrastructure in order to process the MIMIC-III dataset and
generate the required compressed, processed data for input
to the models. This step will load the compressed data and
save it in array format for use by later stages of the pipeline.

(2) Model Selection, Parameter Modifications, and Additional

Data Inclusion: We will compare the performance of several

deep learning models, including recurrent neural networks

(RNNs), transformers, and graph neural networks (GNNs),

and other regression models against the models used in the

original paper. We will also run the model on data containing
different lengths of observation periods. We will include both
the original models as well as our custom models.

Model Training: We will train the selected models on the pre-

processed EMR data. We will use a training/validation/test

split to evaluate the performance of the models. This step
will remain largely unchanged, except we will use our ad-
ditional datasets and models as part of the benchmarking.

We will also train the model for varying epochs in order to

judge the relationship between training epochs and model

performance.

(4) Model Evaluation: We will evaluate the performance of the

selected models and compare them to the models used in

the original paper. We will use metrics such as Precision,

AUROC, and F1-Score. Variables modified will include the

number of epochs, the length of the observation period, and

the specific model used.

Results Interpretation: We will compare our methods, re-

sults, and idea with the findings in the original paper and

generate useful visualizations. If our strategies appear to be
competitive with those used in the paper, we will discuss the
possible implications of utilizing our methods.

—
SY)
=

—~
ol
=

For our ablations, we aimed to implement three distinct models:
a vanilla RNN network, an RNN network with logistic regression,

Al-Faire ’22, Dec 10-Dec 20, 2022, Urbana, IL

and a Bayesian RNN. The first model is a simple, compact model
that we expect to be quick to train but will yield the worst re-
sults. We also predict that RNN with logistic regression will yield
marginally better performance owing to the additional layer, while
the Bayesian RNN will yield the best performance.

For the loss functions, we used "BCEWithLogitsLoss" from Py-
torch, which is a standard binary classification function loss. This is
a cross-entropy loss that gets the probability of the predicted value,
by taking a sigmoid of the predicted values. We also used the posi-
tive weight argument in order to get the proportion of positively
predicted labels.

The optimizer we used was a standard Adam algorithm, which
is a gradient descent optimizer based on a learning rate given. It
gets the derivative of the loss in every iteration and updates the
model’s parameters to minimize the loss.

Overall, our specific approach will allow us to compare the per-
formance of additional deep learning models and datasets against
the models and singular MIMIC-III dataset used in the original pa-
per and determine their suitability for predicting ICU readmissions.
We will employ significant automation to run the entire pipeline
and generate visualizations.

3.4 Computational Requirements

Initially, we faced a significant challenge in obtaining suitable com-
putational resources. We had to wait for a strong AWS GPU to
get approved, which took a long time. After approval, we used the
g4dn.8xlarge GPU instance on AWS Sagemaker to speed up the
computations. The GPU instance provided the necessary computa-
tional power to run our models efficiently, allowing us to train our
models in a timely manner.

The training process of our models was computationally in-
tensive. To minimize the computational burden, we opted to use
fewer samples for our testing, however, training still took around
3-4 hours for each model and we did not have time to train our
Bayesian model to an accuracy of our liking.

Another significant computational challenge was the processing
of the MIMIC-III dataset. The dataset is large, weighing around 49
GB, and processing all the CSV files took a considerable amount of
time. Our computation time was further increased by the need to
clean and pre-process the data before training. Overall, the compu-
tational requirements for this study were significant, and we relied
heavily on cloud computing resources to enable us to carry out our
research efficiently.

4 RESULTS

The results we obtained show the performance of different neu-
ral network models on a task, where the evaluation metrics in-
clude Average Precision, AUROC, F1 score, PPV (true positive
rate), NPV (false positive rate), sensitivity, and specificity. The

Barlas, et al.

Average Precision | AUROC F,-Score Sensitivity Specificity

ODE +RNN + Attention 0.314 [0.306,0.321] | 0.739[0.736,0.741] | 0.376 [0.371,0.381] | 0.685 [0.666,0.704] | 0.677 [0.658,0.696]

ODE+RNN 0.331(0.323,0.339] | 0.739(0.737,0.742) | 0.372(0.367,0.377) | 0.672 (0.659,0.686] | 0.697 (0.683,0.711]

RNN (ODE time decay) + Attention 0.316(0.307,0.324] | 0.743 [0.741,0.746] | 0.375 [0.370,0.379] | 0.648 [0.641,0.656] | 0.733 [0.726,0.739)

RNN (ODE time decay)
RNN (exp time decay) + Attention

0.300 [0.293,0.308] | 0.741 [0.738,0.744] | 0.372[0.367,0.376] | 0.710 [0.698,0.722] | 0.667 [0.655,0.679]
0.320(0.312,0.328] | 0.748 [0.745,0.751] | 0.377 [0.372,0.382] | 0.704 [0.692,0.715] | 0.680 [0.668,0.692]

RNN (exp time decay) 0.304[0.297,0.311] | 0735 [0.732,0.738] | 0.368 [0.363,0.373] | 0.707 [0.700,0.714] | 0.670 [0.663,0.676]

RNN (concatenated Atime) + Attention | 0.312[0.303,0.320] | 0.741[0.739,0.744] | 0.368 [0.363,0.372] | 0.687 [0.680,0.695] | 0.688 [0.681,0.696]

RNN (concatenated Atime) 0.311(0.303,0.320] | 0.739 [0.737,0.742) | 0.364 [0.359,0.369] | 0.698 [0.692,0.704] | 0.688 [0.684,0.693]

ODE + Attention 0.294[0.285,0.302] | 0.717 [0.714,0.720] | 0.333[0.328,0.339] | 0.776 [0.768,0.784] | 0.554 [0.548,0.560]

Attention (concatenated time)
MCE + RNN + Attention

0286 [0.277,0.295] | 0711 [0.709,0.714] | 0.330 (0.325,0.334] | 0.700 [0.686,0.714] | 0.614(0.601,0.628]
0.317[0.308,0.325) | 0.736 [0.734,0.739] | 0.373 [0.369,0.378] | 0.630 [0.622,0.638] | 0.744[0.738,0.749]

MCE +RNN 0.298 (0.291,0.306] | 0.727 [0.724,0.730] | 0.361 [0.357,0.366] | 0.654 [0.645,0.663] | 0.706 [0.697,0.715]

MCE + Attention 0.269 0.261,0.278] | 0.689 [0.686,0.692) | 0.312[0.308,0.316] | 0.686 [0.676,0.695] | 0.616 (0.607,0.625]

Logistic Regression 0257 [0.248,0.266] | 0.659 [0.656,0.663] | 0.296 [0.291,0.300] | 0.606 [0.597,0.615] | 0.647 [0.639,0.655]

Figure 1: The original results from the paper.

models are variants of bi-RNN (bidirectional recurrent neural net-
works), Vanilla_RNNs (simple recurrent neural networks), and
RNN_logistic_regression, with some including attention mecha-
nisms and ODE (ordinary differential equation) solvers. The yellow
rows in the table refer to the two extra models we ran - a vanilla
RNN and an RNN with logistic regression.

The precision and AUROC scores for the existing models were
very similar between the paper’s statistics and our replication study.
For instance, the RNN + ODE + Attention model had precision
and AUROC of 0.314 and 0.739, respectively, in the original paper.
When we tried training and evaluating the same model, we got
precision and AUROC of 0.316 and 0.737, respectively. Other rows
and columns have similar statistics.

As hypothesized, the extra models we ran had slightly worse
results owing to their reduced complexity, albeit not by that much.
The vanilla RNN, for instance, had a precision of 0.253 and an AU-
ROC of 0.648. These figures are roughly 20% worse than the best
models. These models took significantly less time for training, how-
ever.

We also attempted to run a Bayesian RNN, but unfortunately,
we were unable to get it functional before the deadline.

Comparing the results, we see that the models with attention
generally perform better than those without. The ODE-based mod-
els perform similarly to the bi-RNN models, but with higher time
complexity. The best model is the ode_bi-RNN with attention, with
a higher average precision and AUROC than the other models. On
the other hand, the Vanilla_RNN and the RNN_logistic_regression
models performed worse than the others, indicating the importance
of more sophisticated architectures for this task.

In terms of evaluation metrics, PPV is high for many models,
indicating a low false positive rate. However, some models have
a sensitivity score below 0.7, suggesting that they are not able to
detect a significant portion of the positive cases.

Benchmarking Deep Learning Architectures for Predicting Readmission to the ICU and Describing Patients-at-Risk

Model Average AUROC F1 Score PPV NPV Sensitivity Specificity
Precision
Vanilla RNN 0.253 0,648 0299 0982 0883 0527 0.716
0.239,0.268] 0.643,0.654] 10.291,0307] [0.944,1.019] [0.881,0.885] [0.516,0.538] 0.709,0.722]
RNN + Logistic 0.257 0.658 0.305 0982 0883 0524 073
Regression 0.243,0.272] 10.652,0.664] 10.298,0312] 10.946,1.018] [0.881,0.885] 10.501,0.547] 0.709,0.75]
RNN + Time 0.304 073 0.368 0975 088 0698 0672
Decay 0.274,0.335] 0.718,0.743] [0.351,0.386] 10.918,1.032] [0.875,0.885] [0.661,0.734] 0.638,0.705]
RNN + ODE + 0.316 0737 0378 1.0 [nan,nan] 0881 0.707 0.652
Attention 0.279,0.353] 0.725,0.749] 10.354,0401] 10.876,0.886] 10.636,0.777] [0.579,0.725]
RNN + ODE 0.335 0737 0.374 1.0 [nan,nan] 0882 0647 0722
0.298,0.373] [0.724,0.75] [0.351,0.397) [0.878.0.887) [0.59.0.705] [0.662.0.782]
RNN + ODE + 0.32 074 0.375 0.96 0.881 0.63 0.746
Atention + [0.285,0.356] | [0.728,0.752] | [0.355,0.394] [0.87,1.05] [0.876,0.886] | [0.606,0.653] | [0.728,0.764]
Time Decay
RNN + 0.324 0.745 0.378 1.0 [nan,nan] 0.882 0.701 0.675
Attention + [0.288,0.36] | [0.733,0.758] | [0.358,0.399] [0.877,0.887] | [0.657,0.745] | [0.626,0.725]

Time Decay

Figure 2: The results we got from running our experiment.
The yellow rows refer to our own neural networks; the other
rows are the existing paper’s neural networks that we re-
trained.

5 DISCUSSION

The results of our experiments provide insights into the effective-
ness of different neural network architectures for predicting mor-
tality risk in ICU patients using the MIMIC-III dataset. Overall, our
models demonstrated moderate to good performance on several
evaluation metrics, including AUROC, F1, and sensitivity. However,
there were some notable differences in performance between our
models and those reported in previous studies.

One key finding was that our best-performing model, the ode-bi-
RNN architecture, achieved an AUROC of 0.737, which is similar to
or slightly better than the performance reported by other studies
that used similar datasets and model architectures. This suggests
that the "ode-birnn" is a promising approach for patient readmis-
sion risk prediction in ICU patients. Our results suggest that more
complex models, such as the "ode-bi-RNN" architecture, may be
necessary for accurate predictions. Overall, these results provide
insights into the effectiveness of different neural network models
for this task and highlight the importance of attention mechanisms
and complex architectures for achieving good performance.

The most difficult part of the implementation was actually set-
ting up the environment to run the code, as minor tweaks were
necessary. Once everything was set up, however, we were easily
able to train the existing models and run our own models as well.
The authors did an excellent job modularizing and documenting
the code.

Another thing to consider is the tradeoff between runtime and
accuracy. Our RNN models took significantly less time for train-
ing and inference than the more complex models which utilized
advanced techniques such as attention or ODEs. However, the re-
duction in AUROC and precision was not as significant, roughly
20%. This alludes to the law of diminishing returns, whereby the
marginal increase in performance metrics reduces as the model
becomes more and more complex. Granted, most healthcare compa-
nies will have access to supercomputers capable of processing vast

Al-Faire ’22, Dec 10-Dec 20, 2022, Urbana, IL

quantities of data, but the tradeoff between speed and performance
should be considered.

Future research should explore more complicated models and
perhaps data preprocessing in order to gauge their impact on the
performance metrics. Clearly, more complicated techniques are nec-
essary to yield optimal results, and advanced architectures such as
Graph Neural Networks (GNNs) should be considered. The models
can be run with truncated input datasets (ex. a smaller window of
past medical data). Medical data is inherently complex, and trying
out different combinations of data preprocessing techniques, hyper-
parameters, and model architectures is essential to understanding
how these black box models function.

6 CONCLUSION

Predicting patient readmission is one of the most important things
a hospital can do to save money, time, and lives. Benchmarking a
variety of datasets and models for patient readmission will help put
the process into perspective and provide insight to healthcare pro-
fessionals and researchers who may want to come up with efficient
and effective algorithms to achieve the task, especially when work-
ing with limited computing power or poor datasets. Our project
showed that predicting patient readmission with relatively high
accuracy within 30 days is a viable task with consumer electronics
and that even basic models yield satisfactory performance. Further
exploration into the subject should use more complicated models,
larger training datasets, and more powerful computers. Predicting
patient readmission has the potential to save billions of dollars
and, more importantly, save countless lives, and our project demon-
strated that it is viable to use patients’ medical records to this end.
Combining healthcare with deep learning can potentially revolu-
tionize the industry, and future research should focus extensively
on predicting patient outcomes in order to save money and lives.

7 LINKS

We recommend downloading the video as the Google Drive player
can be buggy. The github repository also contains the video.

e Github code: Click here.
e Presentation Slides: Click here.

e Presentation Video: Click here.

REFERENCES

[1] Roger Mark Alistair Johnson, Tom Pollard. Mimic-iii clinical database. 2016. URL
https://physionet.org/content/mimiciii-demo/1.4/.

Sebastiano Barbieri, James Kemp, Oscar Perez-Concha, Sradha Kotwal, Martin Gal-
lagher, Angus Ritchie, and Louisa Jorm. Benchmarking deep learning architectures
for predicting readmission to the icu and describing patients-at-risk. Scientific
reports, 10(1):1111, 2020.

Yaron Blinder. Predicting 30-day icu readmissions from the mimic-iii database.
2017.

2

&

https://github.com/kingazaan/CS598-Healthcare-Project
https://docs.google.com/presentation/d/17_4aTI0spQ5Xa69nf-n6_Akig2wrKIYCZTEIAKkZvIo/edit?usp=sharing
https://drive.google.com/file/d/14-Nro689eoJrFi5tHP95UYc0qGeDeZMo/view?usp=share_link
https://physionet.org/content/mimiciii-demo/1.4/

	Abstract
	1 Introduction
	2 Scope of Reproducability
	3 Methodology
	3.1 Model Description
	3.2 Data Descriptions
	3.3 Implementation
	3.4 Computational Requirements

	4 Results
	5 Discussion
	6 Conclusion
	7 Links
	References

